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Введение
Физика мезоскопических систем представляет собой передовое направление физики

твёрдого тела и твердотельной электроники, которое исследует уникальные физические
свойства мезоскопических систем. Актуальность исследования обусловлена необходи-
мостью развития новых принципов построения оптоэлектронных устройств на основе
мезоскопических систем, обладающих уникальными фотоэлектрическими и фотоэлек-
тромагнитными свойствами, перспективными для применения в современной микро-
электронике и наноэлектронике. Актуальность исследования физических свойств ме-
зоскопических систем обусловлена стремительным развитием технологий изготовления
мезоскопических систем для наноэлектронных устройств и растущим интересом к ме-
зоскопическим системам в современной наноэлектронике и оптоэлектронике, где пони-
мание фотоэлектрических эффектов критически важно для разработки новых техно-
логий.

Целью работы является теоретической исследование фотоэлектрических и фото-
электромагнитных эффектов в мезоскопических системах.

Для достижения указанной цели в работе поставлены следующие задачи:

1. написание обзора литературы по исследованиям физических свойств мезоскопи-
ческих систем,

2. разработка теоретической модели для описания фотоэлектрических и фотоэлек-
тромагнитных эффектов в мезоскопических системах,

3. проведение численных расчётов физических характеристик фотоэлектрических и
фотоэлектромагнитных эффектов в мезоскопических системах.

Объектом исследования является мезоскопическая система на основе тонких плёнок
с наноточками. Предметом исследования является совокупность фотоэлектрических и
фотоэлектромагнитных эффектов, возникающих в мезоскопических системах под дей-
ствием электромагнитного излучения оптического диапазона.

Методами исследования являются теоретические и численные методы физики мезо-
скопических систем и структур, методы компьютерного моделирования для симуляции
поведения мезоскопических структур на основе численных расчётов физических харак-
теристик мезоскопических систем и структур. Материалами исследования являются
мезоскопические материалы, литературные источники по исследованиям мезоскопиче-
ских материалов.

Научная новизна исследования состоит в том, что впервые проведено комплексное
исследование фотоэлектромагнитных эффектов в мезоскопических системах с учётом
эффектов в наноточках, разработана оригинальная теоретическая модель, позволяю-
щая прогнозировать фотоэлектрические свойства мезоскопических систем с учётом эф-
фектов в наноточках.

Гипотеза исследования состоит в том, что в мезоскопических системах фотоэлек-
трические и фотоэлектромагнитные эффекты существенно отличаются от макроскопи-
ческих аналогов вследствие проявления квантовых размерных эффектов, что приводит
к возникновению новых физических явлений и возможностей их практического исполь-
зования.

Теоретическая значимость научного исследования состоит в том, что происходит
пополнение и расширение базы теоретических знаний о фундаментальных механизмах
взаимодействия света и магнитных полей с мезоскопическими структурами в физике
микроскопических структур и систем, углубление понимания физических процессов
в микроскопических системах, мезоскопических системах, что может способствовать
развитию физики твёрдого тела и материаловедения.

40



НАУКА ONLINE. № 4 (33). 2025

Практическая значимость научного исследования состоит в возможности примене-
ния полученных результатов для создания солнечных батарей с повышенной эффек-
тивностью, высокоэффективных фотодетекторов на основе мезоскопических систем,
высокочувствительных сенсоров для детектирования слабых электромагнитных полей
на основе фотоэлектромагнитных эффектов и оптоэлектронных устройств, работающих
в условиях магнитных полей.

Эффект Дембера как фотоэлектрический эффект в мезоско-
пических системах
Эффект Дембера представляет собой явление возникновения электрического поля

и электродвижущей силы в однородном полупроводнике при его неравномерном осве-
щении. Эффект Дембера обусловлен различием подвижностей электронов и дырок в
полупроводнике. Эффект Дембера в анизотропных средах характеризуется генерацией
переходного бокового фотонапряжения в гетеропереходах, что отличается от обычного
поведения полупроводников. В статье [1] были обнаружены значительные боковые фо-
тонапряжения при неоднородном лазерном облучении, что указывает на то, что эффект
Дембера может проявляться более заметно в анизотропных материалах по сравнению
с изотропными. На это явление влияют анизотропные свойства среды, которые влияют
на распространение электромагнитных волн и взаимодействие спиновых волн, как вид-
но из зависимости частоты от вектора распространения в анизотропных спин-волновых
спектрах [2, 3]. В статье [2] измерен вклад в ширину линии ферромагнитного резонанса
от рассеяния спиновой волны в зависимости от частоты и ориентации в образцах мо-
нокристаллов. В статье [2] рассматривается анизотропия спектра спиновых волн и её
влияние на ширину линии ферромагнитного резонанса в таких материалах, как иттрие-
вый железный гранат. В статье [3] рассматривается распространение электромагнитных
волн, включая математические выводы и решения в анизотропных и магнитодиэлектри-
ческих средах. Кроме того, пьезотермоэлектрические эффекты в анизотропных средах
дополнительно иллюстрируют, как напряжение и деформация могут изменять термо-
электрические свойства, подчеркивая сложное взаимодействие между анизотропией и
электронным поведением [4]. В статье [4] влияние напряжения и деформации на термо-
электрические эффекты обобщается для анизотропных сред, что приводит к развитию
пьезотермоэлектрической и эластотермоэлектрической мощности, теплового эффекта
Пельтье и теплового эффекта Томсона, которые являются тензорными свойствами чет-
вёртого ранга. В статье [4] рассматриваются обобщённые эффекты напряжения и де-
формации на термоэлектрические свойства, включая пьезотермоэлектрические и эла-
стотермоэлектрические эффекты. В работе [5] рассматривается двойное лучепреломле-
ние или двупреломление, когда в кристалле образуются две различные преломлённые
волны, а волновые векторы преломленной и отражённой волн лежат в плоскости па-
дения. В работе [5] рассматриваются свойства электромагнитных волн в анизотропных
средах, включая двупреломление и влияние электрических и магнитных полей на оп-
тическую симметрию. В статье [6] проведено теоретическое исследование фотонапря-
жения, возникающего в изолированных кристаллах типа CdS, возбуждаемых сильно
поглощаемым излучением, с учётом захваченных электронов и захваченных дырок в
дополнение к свободным электронам. В статье [6] обсуждается эффект Дембера в изоли-
рованных кристаллах типа CdS, с упором на фотонапряжение, возникающее из-за неод-
нородного поглощения. В статье [7] обсуждается латеральный фотоэффект Дембера в
графене, который, несмотря на свою электронно-дырочную симметрию, демонстрирует
сильную генерацию фототока из-за неравновесной динамики горячих носителей заряда,
подчёркивая важность асимметрии подвижности в анизотропных средах для генерации
фототока. Таким образом, эффект Дембера в анизотропных средах подчёркивает уни-
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кальные электрические характеристики, которые вытекают из их структурных свойств.
Рассмотрим анизотропную полупроводниковую мезоскопическую структуру, поме-

щённую в электрическом поле. Основные уравнения, описывающие процесс, имеют вид:

j𝑛 = 𝑞𝑛𝜇𝑛 (E+ v𝑛 ×B) , (1)
j𝑝 = 𝑞𝑝𝜇𝑝 (E+ v𝑝 ×B) , (2)

где j𝑛 – плотность тока электронов, j𝑝 – плотность тока дырок, 𝑞 – элементарный заряд,
𝑛 – концентрация электронов, 𝑝 – концентрация дырок, 𝜇𝑛 – подвижность электронов,
𝜇𝑝 – подвижность дырок, E – напряжённость электрического поля, B – индукция маг-
нитного поля, v𝑛 – скорость электронов, v𝑝 – скорость дырок.

В анизотропных мезоскопических структурах тензор подвижности имеет вид:

𝜇𝑖𝑗 =

⎛⎝𝜇𝑥𝑥 𝜇𝑥𝑦 𝜇𝑥𝑧

𝜇𝑦𝑥 𝜇𝑦𝑦 𝜇𝑦𝑧

𝜇𝑧𝑥 𝜇𝑧𝑦 𝜇𝑧𝑧

⎞⎠ (3)

где 𝜇𝑖𝑗 – компоненты тензора подвижности.
Уравнения непрерывности для электронов и дырок имеют вид:

𝜕𝑛

𝜕𝑡
+∇ · j𝑛 = 𝑅𝑛 , (4)

𝜕𝑝

𝜕𝑡
+∇ · j𝑝 = 𝑅𝑝 , (5)

где 𝑅𝑛 и 𝑅𝑝 – скорости генерации и рекомбинации.
Потенциал в мезоскопической структуре описывается уравнением Пуассона:

∇2𝜙 = −𝑞

𝜀
(𝑝− 𝑛+𝑁𝑑 −𝑁𝑎) , (6)

где 𝜙 – электрический потенциал, 𝜀 – диэлектрическая проницаемость, 𝑁𝑑 – концентра-
ция доноров, 𝑁𝑎 - концентрация акцепторов.

На границах мезоскопической структуры введём граничные условия:

j𝑛 · n = 0 , (7)
j𝑝 · n = 0 , (8)

где n – вектор нормали к поверхности.
Используя метод функции Грина, для скалярного потенциала электрических заря-

дов в мезоскопической системе получаем:

𝜙 (r) =

∫︁
𝐺 (r, r′) 𝜌 (r′) 𝑑3𝑟′ , (9)

где 𝐺 (r, r′) – функция Грина, а 𝜌 (r′) – объёмная плотность электрического заряда.
Для компонент тензора проводимости мезоскопической системы имеем:

𝜎𝑖𝑗 = 𝑞 (𝜇𝑛𝑛𝑖𝑗 + 𝜇𝑝𝑝𝑖𝑗) , (10)

где 𝑛𝑖𝑗 и 𝑝𝑖𝑗 – компоненты тензоров концентраций носителей.
Для описания эффекта Дембера в анизотропной мезоскопической среде введём диф-

ференциальную проводимость, которая определяется выражением:

∆𝜎𝑖𝑗 = 𝑞 (𝜇𝑛∆𝑛𝑖𝑗 + 𝜇𝑝∆𝑝𝑖𝑗) , (11)
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где ∆𝑛𝑖𝑗 и ∆𝑝𝑖𝑗 – изменения концентраций при освещении.
Поток носителей заряда имеет вид:

J = −𝑞 (𝜇𝑛D𝑛 + 𝜇𝑝D𝑝) , (12)

где D𝑛 и D𝑝 – градиенты концентраций электронов и дырок.
Электродвижущая сила определяется выражением:

ℰ =

∫︁
E · 𝑑l =

∫︁
∇𝜙 · 𝑑l , (13)

где интегрирование производится по контуру образца.
Коэффициент анизотропии определяется как:

𝐴 =
𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛

𝜇𝑚𝑎𝑥 + 𝜇𝑚𝑖𝑛

, (14)

где 𝜇𝑚𝑎𝑥 и 𝜇𝑚𝑖𝑛 – максимальные и минимальные значения подвижности.
В магнитном поле эффект Дембера модифицируется:

EHall =
v ×B

𝜇
, (15)

где EHall – холловское поле.

Эффект Кикоина–Носкова как фотоэлектромагнитный эффект
в мезоскопических системах
Эффект Кикоина–Носкова или фотоэлектромагнитный эффект обусловлен возник-

новением электрического поля в освещённом полупроводнике, помещённом в магнитное
поле, при освещении его сильно поглощаемым светом. Эффект открыт советскими фи-
зиками И. К. Кикоиным и М. М. Носковым в 1933 году. Эффект Кикоина–Носкова
представляет собой фотоэлектромагнитный эффект, при котором в полупроводнике,
помещённом в магнитное поле, возникает электродвижущая сила при освещении об-
разца даже при отсутствии электрического тока. Эффект Кикоина–Носкова аналогичен
поперечному эффекту Нернста–Эттингсгаузена.

Эффект Кикоина-Носкова в анизотропных средах относится к изменению характе-
ристик распространения волн из-за присущей среде анизотропии. В магнитных мате-
риалах анизотропия приводит к снятию вырождения в частотах спиновых волн, влияя
на ширину линий ферромагнитного резонанса в зависимости от направления распро-
странения [2]. Кроме того, динамика энергии перегибов в анизотропных средах подчёр-
кивает значительный вклад упругой и основной энергии, подчеркивая сложность, вно-
симую анизотропными взаимодействиями [8]. Энергия пары перегибов рассчитывается
путём аппроксимации конфигурации кусочно-прямолинейными сегментами и миними-
зации полной энергии относительно геометрических параметров, как обсуждается в
работе [8], а выражение для упругой энергии включает все члены взаимодействия меж-
ду различными сегментами и полностью учитывает анизотропию. В электромагнитных
приложениях спроектированные анизотропные среды могут улучшить производитель-
ность устройств за счёт уникальных свойств распространения, таких как двулучепре-
ломление и эффективные показатели преломления [3]. Наконец, распространение по-
ляризованного света в анизотропных средах с усилением показывает, как анизотропное
усиление влияет на динамику волн, что ещё раз иллюстрирует многогранную природу
анизотропных эффектов [9].
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Рассмотрим анизотропную полупроводниковую мезоскопическую структуру, поме-
щённую в магнитном поле с магнитной индукцией B.

B = 𝐵𝑥n𝑥 +𝐵𝑦n𝑦 +𝐵𝑧n𝑧 , (16)

где 𝐵𝑥, 𝐵𝑦, 𝐵𝑧 – декартовы проекции магнитного поля.
Запишем основные уравнения, используемые для описания физических процессов с

учётом эффекта Кикоина–Носкова в анизотропных средах.

j = 𝜎(E+ v ×B) , (17)

где 𝜎 – тензор проводимости, v – скорость носителей заряда.

j = 𝜎E+ 𝜎𝑥𝑦B (18)

где 𝜎𝑥𝑦 – холловская проводимость.
С учётом анизотропии среды запишем тензор

𝜎𝑖𝑗 =

⎛⎝𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

⎞⎠ . (19)

𝜎𝑥𝑦 =
𝑛𝑒2

𝑚

𝐵

𝜔2
𝑐 + 𝛾2

, (20)

где 𝑛 – концентрация носителей, 𝑒 – заряд электрона, 𝑚 – эффективная масса носителей
заряда, 𝜔𝑐 – циклотронная частота, 𝛾 – коэффициент затухания.

Запишем уравнение для нахождения электродвижущей силы

ℰ𝐹𝐸𝑀 = 𝛼𝐵Φ , (21)

где ℰ𝐹𝐸𝑀 – электродвижущая сила эффекта Кикоина-Носкова, 𝛼 – коэффициент про-
порциональности, Φ – поток излучения.

Анизотропия чётного эффекта Кикоина-Носкова

ℰ (2)
𝐹𝐸𝑀 = 𝛽𝐵2Φ , (22)

где 𝛽 – коэффициент анизотропии.
Фотомагнитомеханический эффект описывается формулой намагниченности

𝑀 = 𝜇0𝜒𝐻 , (23)

где 𝑀 – намагниченность, 𝜒 – магнитная восприимчивость.
Кинетические уравнения запишем в виде

𝜕𝑓

𝜕𝑡
+ v · ∇𝑓 +

𝑒

𝑚
(E+ v ×B) · ∇𝑣𝑓 = 𝐼[𝑓 ] , (24)

где 𝑓 – функция распределения, 𝐼[𝑓 ] – интеграл столкновений.
Эффекты деформации опишем компонентами тензора

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (25)

где 𝐶𝑖𝑗𝑘𝑙 – тензор упругости, 𝜀𝑘𝑙 – тензор деформации.
Здесь были исследованы физические характеристики эффекта Кикоина–Носкова в

анизотропных полупроводниковых структурах. Установлена зависимость электродви-
жущей силы от величины магнитного поля и температуры. Обнаружена анизотропия
чётного эффекта Кикоина–Носкова.
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Результаты численных расчётов физических характеристик ме-
зоскопических систем с учётом эффектов Дембера и Кикоина–
Носкова
Рассмотрим мезоскопическую систему, состоящую из массива наноточек в полупро-

водниковой матрице, которая находится во внешнем магнитном поле.
Интенсивность излучения мезоскопической системы из массива магнитных наното-

чек в полупроводниковой матрице находится по формуле

𝐼 (ℏ𝜔) = 𝐴𝑁
(︀
𝐸𝐹 − 𝐸eff

𝑔

)︀⎛⎝ ℏ𝜔 − 𝑒𝑈𝐷

exp
(︁

ℏ𝜔−𝑒𝑈𝐷

𝑚𝑘𝐵𝑇

)︁ +
ℏ𝜔 − 𝑒𝑈𝐾𝑁

exp
(︁

ℏ𝜔−𝑒𝑈𝐾𝑁

𝑚𝑘𝐵𝑇

)︁
⎞⎠ , (26)

где 𝜔 – циклическая частота излучения, ℏ – постоянная Планка, 𝑘𝐵 – постоянная Больц-
мана, 𝑇 – температура, 𝑚 = 𝑚*

𝑐/𝑚
*
𝑐𝑣, 𝐸𝐹 – энергия Ферми, 𝐸eff

𝑔 – эффективная ширина
запрещённой зоны полупроводниковой матрицы, 𝑁 – концентрация наноточек в образ-
це. Для выбранной полупроводниковой матрицы эффективные массы носителей заряда
равны 𝑚*

𝑐 = 1.08𝑚𝑒, 𝑚*
𝑣 = 0.60𝑚𝑒, где 𝑚𝑒 – масса свободного электрона.

Приведённую эффективную массу можно найти из выражения

1

𝑚*
𝑐𝑣

=
1

𝑚*
𝑐

+
1

𝑚*
𝑣

, (27)

из которого получаем

𝑚*
𝑐𝑣 =

𝑚*
𝑐𝑚

*
𝑣

𝑚*
𝑐 +𝑚*

𝑣

. (28)

Эффективная ширина запрещённой зоны для материала мезоскопической системы
вычисляется по формуле

𝐸eff
𝑔 (𝑇 ) = 𝐸𝑔0 −

𝛼𝑇 2

𝑇 + 𝛽
+

ℏ2𝜉2𝑛
8𝑚𝑅𝑟20

, (29)

где 𝐸𝑔0 – ширина запрещённой зоны при 𝑇 = 0К, 𝜉2𝑛 – нули функции Бесселя, 𝑟0 – радиус
наноточки. Для кремния 𝐸𝑔0 = 1.17 эВ, 𝛼 = 12.8 · 10−4 эВ/К, 𝛽 = 636К, 𝑚*

𝑐 = 1.08𝑚𝑒,
𝑚*

𝑣 = 0.60𝑚𝑒.
В компьютерной программе можно изменять материал полупроводниковой матрицы

мезоскопической системы, изменяя параметры 𝐸𝑔0, 𝛼, 𝛽.
Найдём напряжение с учётом эффекта Дембера по следующей формуле

𝑈𝐷 = −𝑘𝐵𝑇

𝑒

𝑏− 1

𝑏+ 2

ℓ∫︁
0

𝑑∆𝜎

𝜎
=

𝑘𝐵𝑇

𝑒

𝑏− 1

𝑏+ 2
ln

𝜎 (0)

𝜎 (ℓ)
=

=
𝑘𝐵𝑇

𝑒

𝑏− 1

𝑏+ 2
ln

⃒⃒⃒⃒
1 +

(𝑏+ 1)∆𝑛

𝑏𝑛0 + 𝑝0

⃒⃒⃒⃒
, (30)

где 𝑏 = 𝜇𝑛/𝜇𝑝. Тогда энергия с учётом эффекта Дембера

𝐸𝐷 = 𝑒𝑈𝐷 = 𝑘𝐵𝑇
𝑏− 1

𝑏+ 2
ln

⃒⃒⃒⃒
1 +

(𝑏+ 1)∆𝑛

𝑏𝑛0 + 𝑝0

⃒⃒⃒⃒
. (31)

Скалярные потенциалы электронов и дырок в мезоскопической структуре с учётом
фотоэлектромагнитного эффекта находятся из соотношений:

𝜙𝑛 = −𝜇𝐻
𝑛 𝐵 , (32)

𝜙𝑝 = −𝜇𝐻
𝑝 𝐵 . (33)

45



НАУКА ONLINE. № 4 (33). 2025

Используя выражения скалярных потенциалов электронов и дырок в мезоскопической
структуре находим полную проводимость образца

𝜎 =
𝑏ℓ

𝑎
𝜎0 +

𝑏

𝑎

ℓ∫︁
0

∆𝜎𝑑𝑥 =
𝑏ℓ

𝑎
𝜎0 +

𝑒𝑏

𝑎
(𝜇𝑛 + 𝜇𝑝)

ℓ∫︁
0

∆𝑛𝑑ℓ , (34)

где 𝑎 – размер образца по оси 𝑦.
Найдём напряжение с учётом фотоэлектромагнитного эффекта Кикоина–Носкова

по формуле

𝑈𝐾𝑁 = 𝑒𝑟𝑎𝐷𝐵
(𝜇𝑛 + 𝜇𝑝) (∆𝑛 (0)−∆𝑛 (ℓ))

ℓ𝜎0 + 𝑒 (𝜇𝑛 + 𝜇𝑝)
ℓ∫︀
0

∆𝑛𝑑ℓ

, (35)

где 𝜎0 – проводимость в темноте, 𝑟 – Холл-фактор, зависящий от механизма рассеяния,
∆𝑛 и ∆𝑝 – концентрации избыточных носителей заряда.

В настоящей работе была разработана компьютерная программа, позволяющая вы-
числять физические характеристики мезоскопических систем, находящихся во внешнем
магнитном поле.

Рис. 1. Фрагмент компьютерной программы для расчёта физических характеристик
мезоскопических систем

На рис. 1 приведено изображение фрагмента компьютерной программы для расчёта
физических характеристик мезоскопических систем.

На рис. 2 приведено изображение дисперсионной зависимости для мезоскопической
структуры с магнитными наноточками при температуре а) 𝑇 = 300К, б) 𝑇 = 350К.
Фактор заполнения образца магнитными наноточками 𝑓1 = 3%. Диаметр наноточки
равен 𝑑 = 20нм. В мезоскопической структуре период массива магнитных наноточек
равен 𝑎 = 60нм.

На рис. 3 приведено изображение дисперсионной зависимости для мезоскопической
структуры с магнитными наноточками при температуре а) 𝑇 = 400К, б) 𝑇 = 500К.
Фактор заполнения образца магнитными наноточками 𝑓1 = 3%. Диаметр наноточки
равен 𝑑 = 20нм. В мезоскопической структуре период массива магнитных наноточек
равен 𝑎 = 60нм.

На рис. 4 приведён график зависимости интенсивности излучения активной мезоско-
пической структуры с магнитными наноточками от длины волны излучения и индук-
ции магнитного поля при температуре а) 𝑇 = 300К, б) 𝑇 = 350К. Фактор заполнения
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а) б)

Рис. 2. Дисперсионная зависимость 𝜔 = 𝜔 (k,B) для мезоскопической структуры с маг-
нитными наноточками при температуре а) 𝑇 = 300К, б) 𝑇 = 350К. Фактор заполнения
образца магнитными наноточками 𝑓1 = 3%. Диаметр наноточки равен 𝑑 = 20 нм. В
мезоскопической структуре период массива магнитных наноточек равен 𝑎 = 60нм

а) б)

Рис. 3. Дисперсионная зависимость 𝜔 = 𝜔 (k,B) для мезоскопической структуры с маг-
нитными наноточками при температуре а) 𝑇 = 400К, б) 𝑇 = 500К. Фактор заполнения
образца магнитными наноточками 𝑓1 = 3%. Диаметр наноточки равен 𝑑 = 20 нм. В
мезоскопической структуре период массива магнитных наноточек равен 𝑎 = 60нм

47



НАУКА ONLINE. № 4 (33). 2025

а) б)

Рис. 4. Интенсивность излучения активной мезоскопической структуры с магнитными
наноточками от длины волны излучения и индукции магнитного поля при температуре
а) 𝑇 = 300К, б) 𝑇 = 350К. Фактор заполнения образца магнитными наноточками
𝑓1 = 3%. Диаметр наноточки равен 𝑑 = 20нм. В мезоскопической структуре период
массива магнитных наноточек равен 𝑎 = 60нм

образца магнитными наноточками 𝑓1 = 3%. Диаметр наноточки равен 𝑑 = 20 нм. В
мезоскопической структуре период массива магнитных наноточек равен 𝑎 = 60нм.

а) б)

Рис. 5. Интенсивность излучения активной мезоскопической структуры с магнитными
наноточками от длины волны излучения и индукции магнитного поля при температуре
а) 𝑇 = 400К, б) 𝑇 = 500К. Фактор заполнения образца магнитными наноточками
𝑓1 = 3%. Диаметр наноточки равен 𝑑 = 20нм. В мезоскопической структуре период
массива магнитных наноточек равен 𝑎 = 60нм

На рис. 5 приведён график зависимости интенсивности излучения мезоскопической
структуры с наноточками от длины волны излучения и индукции магнитного поля при
температуре а) 𝑇 = 400К, б) 𝑇 = 500К. Фактор заполнения образца наноточками
𝑓1 = 3%. Диаметр наноточки равен 𝑑 = 20нм. В мезоскопической структуре период
массива наноточек равен 𝑎 = 60нм.

Проведённые численные расчёты позволили построить графики зависимостей ин-
тенсивности излучения и волнового вектора массива наноточек в активных мезоскопи-
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ческих системах от длины волны излучения и индукции магнитного поля.

Заключение
Физика мезоскопических систем открывает новые горизонты для разработки вы-

сокоэффективных электронных устройств на основе мезоскопических систем, которые
могут значительно улучшить производительность и функциональность электронных
устройств.

Выводы по работе можно сформулировать следующим образом:

1. выполненный всесторонний анализ научной литературы показал актуальность ис-
следования физических свойств мезоскопических систем,

2. разработанная теоретическая модель позволяет адекватно описывать физические
процессы в мезоскопических системах,

3. в результате численных расчётов получены графики зависимостей физических
характеристик мезоскопических систем от длины волны излучения и индукции
магнитного поля.

Задачи работы решены полностью.
Гипотеза исследования, состоящая в том, что в мезоскопических системах фотоэлек-

трические и фотоэлектромагнитные эффекты существенно отличаются от макроскопи-
ческих аналогов вследствие проявления квантовых размерных эффектов, что приводит
к возникновению новых физических явлений и возможностей их практического исполь-
зования, подтверждена полностью.
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